30 research outputs found

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    Gaussian width bounds with applications to arithmetic progressions in random settings

    Get PDF
    Motivated by problems on random differences in Szemer\'{e}di's theorem and on large deviations for arithmetic progressions in random sets, we prove upper bounds on the Gaussian width of point sets that are formed by the image of the nn-dimensional Boolean hypercube under a mapping ψ:RnRk\psi:\mathbb{R}^n\to\mathbb{R}^k, where each coordinate is a constant-degree multilinear polynomial with 0-1 coefficients. We show the following applications of our bounds. Let [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p be the random subset of Z/NZ\mathbb{Z}/N\mathbb{Z} containing each element independently with probability pp. \bullet A set DZ/NZD\subseteq \mathbb{Z}/N\mathbb{Z} is \ell-intersective if any dense subset of Z/NZ\mathbb{Z}/N\mathbb{Z} contains a proper (+1)(\ell+1)-term arithmetic progression with common difference in DD. Our main result implies that [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p is \ell-intersective with probability 1o(1)1 - o(1) provided pω(NβlogN)p \geq \omega(N^{-\beta_\ell}\log N) for β=((+1)/2)1\beta_\ell = (\lceil(\ell+1)/2\rceil)^{-1}. This gives a polynomial improvement for all 3\ell \ge 3 of a previous bound due to Frantzikinakis, Lesigne and Wierdl, and reproves more directly the same improvement shown recently by the authors and Dvir. \bullet Let XkX_k be the number of kk-term arithmetic progressions in [Z/NZ]p[\mathbb{Z}/N\mathbb{Z}]_p and consider the large deviation rate ρk(δ)=logPr[Xk(1+δ)EXk]\rho_k(\delta) = \log\Pr[X_k \geq (1+\delta)\mathbb{E}X_k]. We give quadratic improvements of the best-known range of pp for which a highly precise estimate of ρk(δ)\rho_k(\delta) due to Bhattacharya, Ganguly, Shao and Zhao is valid for all odd k5k \geq 5. We also discuss connections with error correcting codes (locally decodable codes) and the Banach-space notion of type for injective tensor products of p\ell_p-spaces.Comment: 18 pages, some typos fixe

    Outlaw distributions and locally decodable codes

    Get PDF
    Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in~LL_\infty~norm) with a small number of samples. We coin the term `outlaw distributions' for such distributions since they `defy' the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently `smooth' functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and from hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters.Comment: A preliminary version of this paper appeared in the proceedings of ITCS 201

    On the number of rich lines in truly high dimensional sets

    Get PDF
    We prove a new upper bound on the number of rr-rich lines (lines with at least rr points) in a `truly' dd-dimensional configuration of points v1,,vnCdv_1,\ldots,v_n \in \mathbb{C}^d. More formally, we show that, if the number of rr-rich lines is significantly larger than n2/rdn^2/r^d then there must exist a large subset of the points contained in a hyperplane. We conjecture that the factor rdr^d can be replaced with a tight rd+1r^{d+1}. If true, this would generalize the classic Szemer\'edi-Trotter theorem which gives a bound of n2/r3n^2/r^3 on the number of rr-rich lines in a planar configuration. This conjecture was shown to hold in R3\mathbb{R}^3 in the seminal work of Guth and Katz \cite{GK10} and was also recently proved over R4\mathbb{R}^4 (under some additional restrictions) \cite{SS14}. For the special case of arithmetic progressions (rr collinear points that are evenly distanced) we give a bound that is tight up to low order terms, showing that a dd-dimensional grid achieves the largest number of rr-term progressions. The main ingredient in the proof is a new method to find a low degree polynomial that vanishes on many of the rich lines. Unlike previous applications of the polynomial method, we do not find this polynomial by interpolation. The starting observation is that the degree r2r-2 Veronese embedding takes rr-collinear points to rr linearly dependent images. Hence, each collinear rr-tuple of points, gives us a dependent rr-tuple of images. We then use the design-matrix method of \cite{BDWY12} to convert these 'local' linear dependencies into a global one, showing that all the images lie in a hyperplane. This then translates into a low degree polynomial vanishing on the original set

    Gaussian width bounds with applications to arithmetic progressions in random settings

    Get PDF
    Motivated by two problems on arithmetic progressions (APs)—concerning large deviations for AP counts in random sets and random differences in Szemer´edi’s theorem— we prove upper bounds on the Gaussian width of the image of the n-dimensional Boolean hypercube under a mapping ψ : Rn → Rk, where each coordinate is a constant-degree multilinear polynomial with 0/1 coefficients. We show the following applications of our bounds. Let [Z/NZ]p be the random subset of Z/NZ containing each element independently with probability p. • Let Xk be the number of k-term APs in [Z/NZ]p. We show that a precise estimate on the large deviation rate log Pr[Xk ≥ (1 + δ)EXk] due to Bhattacharya, Ganguly, Shao and Zhao is valid if

    Lower Bounds for 2-Query LCCs over Large Alphabet

    Get PDF
    A locally correctable code (LCC) is an error correcting code that allows correction of any arbitrary coordinate of a corrupted codeword by querying only a few coordinates. We show that any 2-query locally correctable code C:{0,1}^k -> Sigma^n that can correct a constant fraction of corrupted symbols must have n >= exp(k/log|Sigma|) under the assumption that the LCC is zero-error. We say that an LCC is zero-error if there exists a non-adaptive corrector algorithm that succeeds with probability 1 when the input is an uncorrupted codeword. All known constructions of LCCs are zero-error. Our result is tight upto constant factors in the exponent. The only previous lower bound on the length of 2-query LCCs over large alphabet was Omega((k/log|Sigma|)^2) due to Katz and Trevisan (STOC 2000). Our bound implies that zero-error LCCs cannot yield 2-server private information retrieval (PIR) schemes with sub-polynomial communication. Since there exists a 2-server PIR scheme with sub-polynomial communication (STOC 2015) based on a zero-error 2-query locally decodable code (LDC), we also obtain a separation between LDCs and LCCs over large alphabet

    Generalized GM-MDS: Polynomial Codes are Higher Order MDS

    Full text link
    The GM-MDS theorem, conjectured by Dau-Song-Dong-Yuen and proved by Lovett and Yildiz-Hassibi, shows that the generator matrices of Reed-Solomon codes can attain every possible configuration of zeros for an MDS code. The recently emerging theory of higher order MDS codes has connected the GM-MDS theorem to other important properties of Reed-Solomon codes, including showing that Reed-Solomon codes can achieve list decoding capacity, even over fields of size linear in the message length. A few works have extended the GM-MDS theorem to other families of codes, including Gabidulin and skew polynomial codes. In this paper, we generalize all these previous results by showing that the GM-MDS theorem applies to any \emph{polynomial code}, i.e., a code where the columns of the generator matrix are obtained by evaluating linearly independent polynomials at different points. We also show that the GM-MDS theorem applies to dual codes of such polynomial codes, which is non-trivial since the dual of a polynomial code may not be a polynomial code. More generally, we show that GM-MDS theorem also holds for algebraic codes (and their duals) where columns of the generator matrix are chosen to be points on some irreducible variety which is not contained in a hyperplane through the origin. Our generalization has applications to constructing capacity-achieving list-decodable codes as shown in a follow-up work by Brakensiek-Dhar-Gopi-Zhang, where it is proved that randomly punctured algebraic-geometric (AG) codes achieve list-decoding capacity over constant-sized fields.Comment: 34 page

    AG codes achieve list decoding capacity over contant-sized fields

    Full text link
    The recently-emerging field of higher order MDS codes has sought to unify a number of concepts in coding theory. Such areas captured by higher order MDS codes include maximally recoverable (MR) tensor codes, codes with optimal list-decoding guarantees, and codes with constrained generator matrices (as in the GM-MDS theorem). By proving these equivalences, Brakensiek-Gopi-Makam showed the existence of optimally list-decodable Reed-Solomon codes over exponential sized fields. Building on this, recent breakthroughs by Guo-Zhang and Alrabiah-Guruswami-Li have shown that randomly punctured Reed-Solomon codes achieve list-decoding capacity (which is a relaxation of optimal list-decodability) over linear size fields. We extend these works by developing a formal theory of relaxed higher order MDS codes. In particular, we show that there are two inequivalent relaxations which we call lower and upper relaxations. The lower relaxation is equivalent to relaxed optimal list-decodable codes and the upper relaxation is equivalent to relaxed MR tensor codes with a single parity check per column. We then generalize the techniques of GZ and AGL to show that both these relaxations can be constructed over constant size fields by randomly puncturing suitable algebraic-geometric codes. For this, we crucially use the generalized GM-MDS theorem for polynomial codes recently proved by Brakensiek-Dhar-Gopi. We obtain the following corollaries from our main result. First, randomly punctured AG codes of rate RR achieve list-decoding capacity with list size O(1/ϵ)O(1/\epsilon) and field size exp(O(1/ϵ2))\exp(O(1/\epsilon^2)). Prior to this work, AG codes were not even known to achieve list-decoding capacity. Second, by randomly puncturing AG codes, we can construct relaxed MR tensor codes with a single parity check per column over constant-sized fields, whereas (non-relaxed) MR tensor codes require exponential field size.Comment: 38 page

    Spanoids - An Abstraction of Spanning Structures, and a Barrier for LCCs

    Get PDF
    We introduce a simple logical inference structure we call a spanoid (generalizing the notion of a matroid), which captures well-studied problems in several areas. These include combinatorial geometry (point-line incidences), algebra (arrangements of hypersurfaces and ideals), statistical physics (bootstrap percolation), network theory (gossip / infection processes) and coding theory. We initiate a thorough investigation of spanoids, from computational and structural viewpoints, focusing on parameters relevant to the applications areas above and, in particular, to questions regarding Locally Correctable Codes (LCCs). One central parameter we study is the rank of a spanoid, extending the rank of a matroid and related to the dimension of codes. This leads to one main application of our work, establishing the first known barrier to improving the nearly 20-year old bound of Katz-Trevisan (KT) on the dimension of LCCs. On the one hand, we prove that the KT bound (and its more recent refinements) holds for the much more general setting of spanoid rank. On the other hand we show that there exist (random) spanoids whose rank matches these bounds. Thus, to significantly improve the known bounds one must step out of the spanoid framework. Another parameter we explore is the functional rank of a spanoid, which captures the possibility of turning a given spanoid into an actual code. The question of the relationship between rank and functional rank is one of the main questions we raise as it may reveal new avenues for constructing new LCCs (perhaps even matching the KT bound). As a first step, we develop an entropy relaxation of functional rank to create a small constant gap and amplify it by tensoring to construct a spanoid whose functional rank is smaller than rank by a polynomial factor. This is evidence that the entropy method we develop can prove polynomially better bounds than KT-type methods on the dimension of LCCs. To facilitate the above results we also develop some basic structural results on spanoids including an equivalent formulation of spanoids as set systems and properties of spanoid products. We feel that given these initial findings and their motivations, the abstract study of spanoids merits further investigation. We leave plenty of concrete open problems and directions
    corecore